Future Weapon System for Indian Armed Forces:Weapons&Technology






P8i Poseidon


Boeing proposed the P-8I, a customized export variant of the P-8A, to the Indian Navy. In 2009, the Ministry of Defence of India signed an agreement with Boeing for the supply of eight P-8I Poseidons at a total cost of US$2.1 billion. These aircraft would replace Indian Navy's aging Tupolev Tu-142M maritime surveillance turboprops. Each aircraft will cost about US$220 million. The deal not only made India the first international customer of the P-8, but also marked Boeing's first military sale to India.

On May 12, 2010 Boeing announced that it received the Data Link II communications technology for the Indian Navy’s P-8I from Bharat Electronics Limited (BEL) in April, one month ahead of schedule. BEL delivered the Indian-designed communications system that will enable exchange of tactical data and messages between Indian Navy aircraft, ships and shore establishments. In 2012 , India have already received 3 of these aircraft's.


SPYDER and BARAK 8 SAMs


SPYDER is a low-level, quick-reaction, surface-to-air missile (LLQRM) system capable of engaging aircraft, helicopters, unmanned air vehicles, drones and precision-guided munitions. The system provides air defence for fixed assets and for point and area defence for mobile forces in combat areas.

The SPYDER-SR (short range) system has 360° engagement capability and the missiles can be launched from the full-readiness state in less than five seconds post target confirmation. The kill range is specified as being less than 1km to more than 15km. The altitudes range from a minimum of 20m to a maximum of 9,000m. The system is capable of multi-target simultaneous engagement and also single, multiple and ripple firing, by day and night and in all weathers.

Rafael is developing a medium-range version, SPYDER-MR, which has a range over 35km at altitudes from 20m to 16km. SPYDER-MR carries eight missiles while SPYDER-SR has four. SPYDER-MR also has new IAI/Elta MF-STAR surveillance radar.

The main components of the SPYDER system are the truck-mounted command and control unit, the missile firing unit with Python 5 and Derby missiles, a field service vehicle and missile supply vehicle. The system can launch missiles in two modes of operation: lock on before launch (LOBL) and lock on after launch (LOAL).

A typical SPYDER squadron consists of one mobile command and control unit (CCU) and four mobile firing units (MFU). The mobile CCU is equipped with a surveillance radar and two operator stations with a radio datalink between the CCU and the four MFUs.

Hypersonic Brahmos II


Work on the air-launched version of the missile is in the final stages and BrahMos scientists are now waiting for the Su-30MKI aircraft from India to act as a platform for test launch of the missile.

The air-launched version, will be lighter and smaller than the land-based version of the missile so that it can be fitted to the aircraft. One of the two speed boosters in the missile has been removed for the air version of the weapon system as after being launched from an aircraft moving at a speed of more than 1.5 mach, the missile will automatically gain its momentum and maintain its speed of 2.8 mach, the sources said.

After being released from the aircraft, the missile will have a free fall of about 150 metres before getting activated and flying to its target. The range and speed of the missile will remain the same as that of its land and ship-launched versions, they said.

For the integration of the aircraft with the missile, two of IAF Su-30 MKI planes will be used. These aircraft would be the part of the 40 additional Su-30s, for which orders were placed in 2006.

Soon after induction into the IAF, the two aircraft will be sent back to Russia where their airframe will be strengthened to carry the missile in their underbelly, the source said adding, they are expected to be inducted into the operational service of both India and Russia by 2012.

A joint Russian-Indian company has started the development of a cruise missile capable of flying at Mach 5, which will make it 'impossible to intercept'. BrahMos-2 will be the next generation of the highly successful the BrahMos missile already used by Indian military.

The BrahMos missile (the acronym stands for Brahmaputra-Moscow) has been in development since 1998 and had its first successful test launch in 2001. Russia provided the design of its P-800 Oniks missile as the basis of the project while India developed its guidance system. It has a maximum speed of Mach 2.8, making it is the world's fastest cruise missile.

The BrahMos-2 is expected to have twice the speed of the current version, which, the developers say, will make it practically immune to all existing missile defence systems.
F.INSAS

F-INSAS is a Ultra Mordern Programme that has been taken up to equip Indian infantry with the future weaponry, communication network and instant access to information on the battlefield.

This program is similar to the future soldier programs of other nations. F-INSAS includes a fully networked all-terrain, all-weather personal-equipment platform, enhanced firepower and mobility for the digitalised battlefield of the future. The weight carried by soldiers will need to be reduced by at least 50%.

The fully integrated Infantry of tomorrow will be equipped with mission-oriented equipment integrated with his buddy soldier team, the sub-unit, as also the overall C4I2 (Command, Control, Communications Computers, Information and Intelligence) system.
Falcon AWACS

The induction of the Phalcon comes as a tremendous force multiplier in the present standoff between India and Pakistan. The only platforms offering such a capability, albeit a limited one, are the spy planes of the R&AW's Aviation Research Centre and the IAF's fleet of Israeli-built Heron and Searcher-II drones.

The aircraft can do this using its Israeli-built AEW mission suite called the Phalcon, mounted on a Russian-built IL-76 transport aircraft. The system is used for tactical surveillance of airborne and surface targets and intelligence gathering to a radius of over 400 km. The solid-state phased array Elta EL/M-2075 radar is mounted on a radome above the fuselage. The electronically steered beam provides a 360 degree coverage around the aircraft and it carries air force personnel on board to analyse the data and steer fighter aircraft.

"AEWs have a three-fold advantage of flexibility-they can be deployed anywhere, provide much better coverage because they are mounted on an elevated platform and carry control systems and datalinks, which can be used to vector your own fighter aircraft," says Air Marshal V.K. Bhatia, former western air commander.
MMRCA - Rafale

The Indian Air Force Medium Multi-Role Combat Aircraft (MMRCA) Competition, commonly known as the MRCA Tender, is an ongoing competition to supply the Indian Air Force with 126 Multi-Role Combat Aircraft. The Defence Ministry has allocated Rs. 42,000 crore for the purchase of these aircraft (Approx. US$10.5 billion).

Six aircraft were bid for this multi-billion dollar contract, which has been touted as India's single largest defense deal ever. India choose Rafale as winner and it is believed that it will be signed by 2013 and by 2020 , IAF will receive all 126 of these kinds of fighters. 

INS Vikramaditya &IAC 1

INS Vikramaditya  is the new name for the former Soviet aircraft carrier Admiral Gorshkov, which has been procured by India, and is estimated to enter service in the Indian Navy after 2013.

The Vikramaditya is a modified Type 1143 Kiev class aircraft carrier built in 1978-1982 at Black Sea Shipyard, Mykolaiv, Ukraine. The ship is presently being extensively refitted at Sevmash shipyard in Russia. It is projected to replace India's only currently serving aircraft carrier, INS Viraat.

The Vikrant class aircraft carriers (formerly, the Project 71 "Air Defence Ship" (ADS)) are the first aircraft carriers of the Indian Navy to be designed and built in India. They are being built by Cochin Shipyard Limited (CSL).

The Vikrant class carriers will be the largest warships built by CSL. Work on the lead vessel of the class started in 2008, and the keel was laid in February 2009. Eighty percent of works on the carrier will be completed before its launch in 2010. The first carrier of the class was expected to enter service by 2012, but was delayed by a year reportedly due to the inability of Russia to supply the AB/A grade steel. This led to SAIL creating facilities to manufacture the steel in India.
Ballistic Missile Defence

The Indian Ballistic Missile Defense Program is an initiative to develop and deploy a multi-layered Ballistic Missile Defence.

Introduced in light of the ballistic missile threat from Pakistan, it is a two tiered system consisting of two interceptor missiles, namely the Prithvi Air Defence (PAD) missile for high altitude interception, and the Advanced Air Defence (AAD) Missile for lower altitude interception. The two-tiered shield should be able to intercept any incoming missile launched 5,000 kilometers away.

PAD was tested in November 2006, followed by AAD in December 2007. With the test of the PAD missile, India became the fourth country to have successfully developed an Anti-ballistic missile system, after United States, Russia and Israel. On March 6, 2009, India again successfully tested its missile defense shield, during which an incoming "enemy" missile was intercepted at an altitude of 75 km.
INS Arihant

INS Arihant (S-73) is the lead ship of India's Arihant class of nuclear-powered submarines. The 5,000–6,000 tonne vessel was built under the Advanced Technology Vessel (ATV) project at the Ship Building Centre in Visakhapatnam.

The symbolic launch ceremony for the Arihant was held on July 26, 2009 marked the anniversary of Vijay Diwas (Kargil War Victory Day). It was reported that the nuclear reactor and other systems were not included at the time of the submarine's launch.

Full integration of key systems and Sea trials are expected to be extensive. The name of the vessel, Arihant is in Sanskrit and literally translates into destroyer of enemies.

The completion of the INS Arihant will make India one of six countries in the world with the ability to design, build, and operate its own nuclear submarines (the others being the United States, the UK, Russia, France, and China).
PAK FA and FGFA

The Sukhoi PAK FA is a fifth generation fighter aircraft being developed by Sukhoi OKB for the Russian Air Force.

The current prototype is Sukhoi's T-50. The PAK FA when fully developed is intended to replace the MiG-29 Fulcrum and Su-27 Flanker in the Russian inventory and serve as the basis of the Sukhoi/HAL FGFA project being developed with India. A fifth generation jet fighter, it is designed to directly compete with Lockheed Martin's F-22 Raptor and F-35 Lightning II. The T-50 performed its first flight January 29, 2010. Its second flight was on February 6 and its third on February 12.

Sukhoi director Mikhail Pogosyan has projected a market for 1000 aircraft over the next four decades, which will be produced in a joint venture with India, two hundred each for Russia and India and six hundred for other countries. The Sukhoi/HAL Fifth Generation Fighter Aircraft (FGFA) is a fifth-generation fighter being developed by Russia and India. It is a derivative project from the PAK FA (T-50 is the prototype) being developed for the Indian Air Force (FGFA is the official designation for the Indian version).

According to HAL chairman A.K. Baweja shortly after the India-Russia Inter-Governmental Committee meeting on 18 September 2008, the Russian aircraft will be a single-seater, the Indian FGFA will be a twin seater, analogous to the Su-30MKI which is a twin seat variant of the baseline Su-30. Two separate prototypes will be developed, one by Russia (designated the T-50), and a separate one by India (designated FGFA).

Get our updates FREE

Sunday, January 13, 2013

Future Weapon System for Indian Armed Forces:Weapons&Technology





P8i Poseidon


Boeing proposed the P-8I, a customized export variant of the P-8A, to the Indian Navy. In 2009, the Ministry of Defence of India signed an agreement with Boeing for the supply of eight P-8I Poseidons at a total cost of US$2.1 billion. These aircraft would replace Indian Navy's aging Tupolev Tu-142M maritime surveillance turboprops. Each aircraft will cost about US$220 million. The deal not only made India the first international customer of the P-8, but also marked Boeing's first military sale to India.

On May 12, 2010 Boeing announced that it received the Data Link II communications technology for the Indian Navy’s P-8I from Bharat Electronics Limited (BEL) in April, one month ahead of schedule. BEL delivered the Indian-designed communications system that will enable exchange of tactical data and messages between Indian Navy aircraft, ships and shore establishments. In 2012 , India have already received 3 of these aircraft's.


SPYDER and BARAK 8 SAMs


SPYDER is a low-level, quick-reaction, surface-to-air missile (LLQRM) system capable of engaging aircraft, helicopters, unmanned air vehicles, drones and precision-guided munitions. The system provides air defence for fixed assets and for point and area defence for mobile forces in combat areas.

The SPYDER-SR (short range) system has 360° engagement capability and the missiles can be launched from the full-readiness state in less than five seconds post target confirmation. The kill range is specified as being less than 1km to more than 15km. The altitudes range from a minimum of 20m to a maximum of 9,000m. The system is capable of multi-target simultaneous engagement and also single, multiple and ripple firing, by day and night and in all weathers.

Rafael is developing a medium-range version, SPYDER-MR, which has a range over 35km at altitudes from 20m to 16km. SPYDER-MR carries eight missiles while SPYDER-SR has four. SPYDER-MR also has new IAI/Elta MF-STAR surveillance radar.

The main components of the SPYDER system are the truck-mounted command and control unit, the missile firing unit with Python 5 and Derby missiles, a field service vehicle and missile supply vehicle. The system can launch missiles in two modes of operation: lock on before launch (LOBL) and lock on after launch (LOAL).

A typical SPYDER squadron consists of one mobile command and control unit (CCU) and four mobile firing units (MFU). The mobile CCU is equipped with a surveillance radar and two operator stations with a radio datalink between the CCU and the four MFUs.

Hypersonic Brahmos II


Work on the air-launched version of the missile is in the final stages and BrahMos scientists are now waiting for the Su-30MKI aircraft from India to act as a platform for test launch of the missile.

The air-launched version, will be lighter and smaller than the land-based version of the missile so that it can be fitted to the aircraft. One of the two speed boosters in the missile has been removed for the air version of the weapon system as after being launched from an aircraft moving at a speed of more than 1.5 mach, the missile will automatically gain its momentum and maintain its speed of 2.8 mach, the sources said.

After being released from the aircraft, the missile will have a free fall of about 150 metres before getting activated and flying to its target. The range and speed of the missile will remain the same as that of its land and ship-launched versions, they said.

For the integration of the aircraft with the missile, two of IAF Su-30 MKI planes will be used. These aircraft would be the part of the 40 additional Su-30s, for which orders were placed in 2006.

Soon after induction into the IAF, the two aircraft will be sent back to Russia where their airframe will be strengthened to carry the missile in their underbelly, the source said adding, they are expected to be inducted into the operational service of both India and Russia by 2012.

A joint Russian-Indian company has started the development of a cruise missile capable of flying at Mach 5, which will make it 'impossible to intercept'. BrahMos-2 will be the next generation of the highly successful the BrahMos missile already used by Indian military.

The BrahMos missile (the acronym stands for Brahmaputra-Moscow) has been in development since 1998 and had its first successful test launch in 2001. Russia provided the design of its P-800 Oniks missile as the basis of the project while India developed its guidance system. It has a maximum speed of Mach 2.8, making it is the world's fastest cruise missile.

The BrahMos-2 is expected to have twice the speed of the current version, which, the developers say, will make it practically immune to all existing missile defence systems.
F.INSAS

F-INSAS is a Ultra Mordern Programme that has been taken up to equip Indian infantry with the future weaponry, communication network and instant access to information on the battlefield.

This program is similar to the future soldier programs of other nations. F-INSAS includes a fully networked all-terrain, all-weather personal-equipment platform, enhanced firepower and mobility for the digitalised battlefield of the future. The weight carried by soldiers will need to be reduced by at least 50%.

The fully integrated Infantry of tomorrow will be equipped with mission-oriented equipment integrated with his buddy soldier team, the sub-unit, as also the overall C4I2 (Command, Control, Communications Computers, Information and Intelligence) system.
Falcon AWACS

The induction of the Phalcon comes as a tremendous force multiplier in the present standoff between India and Pakistan. The only platforms offering such a capability, albeit a limited one, are the spy planes of the R&AW's Aviation Research Centre and the IAF's fleet of Israeli-built Heron and Searcher-II drones.

The aircraft can do this using its Israeli-built AEW mission suite called the Phalcon, mounted on a Russian-built IL-76 transport aircraft. The system is used for tactical surveillance of airborne and surface targets and intelligence gathering to a radius of over 400 km. The solid-state phased array Elta EL/M-2075 radar is mounted on a radome above the fuselage. The electronically steered beam provides a 360 degree coverage around the aircraft and it carries air force personnel on board to analyse the data and steer fighter aircraft.

"AEWs have a three-fold advantage of flexibility-they can be deployed anywhere, provide much better coverage because they are mounted on an elevated platform and carry control systems and datalinks, which can be used to vector your own fighter aircraft," says Air Marshal V.K. Bhatia, former western air commander.
MMRCA - Rafale

The Indian Air Force Medium Multi-Role Combat Aircraft (MMRCA) Competition, commonly known as the MRCA Tender, is an ongoing competition to supply the Indian Air Force with 126 Multi-Role Combat Aircraft. The Defence Ministry has allocated Rs. 42,000 crore for the purchase of these aircraft (Approx. US$10.5 billion).

Six aircraft were bid for this multi-billion dollar contract, which has been touted as India's single largest defense deal ever. India choose Rafale as winner and it is believed that it will be signed by 2013 and by 2020 , IAF will receive all 126 of these kinds of fighters. 

INS Vikramaditya &IAC 1

INS Vikramaditya  is the new name for the former Soviet aircraft carrier Admiral Gorshkov, which has been procured by India, and is estimated to enter service in the Indian Navy after 2013.

The Vikramaditya is a modified Type 1143 Kiev class aircraft carrier built in 1978-1982 at Black Sea Shipyard, Mykolaiv, Ukraine. The ship is presently being extensively refitted at Sevmash shipyard in Russia. It is projected to replace India's only currently serving aircraft carrier, INS Viraat.

The Vikrant class aircraft carriers (formerly, the Project 71 "Air Defence Ship" (ADS)) are the first aircraft carriers of the Indian Navy to be designed and built in India. They are being built by Cochin Shipyard Limited (CSL).

The Vikrant class carriers will be the largest warships built by CSL. Work on the lead vessel of the class started in 2008, and the keel was laid in February 2009. Eighty percent of works on the carrier will be completed before its launch in 2010. The first carrier of the class was expected to enter service by 2012, but was delayed by a year reportedly due to the inability of Russia to supply the AB/A grade steel. This led to SAIL creating facilities to manufacture the steel in India.
Ballistic Missile Defence

The Indian Ballistic Missile Defense Program is an initiative to develop and deploy a multi-layered Ballistic Missile Defence.

Introduced in light of the ballistic missile threat from Pakistan, it is a two tiered system consisting of two interceptor missiles, namely the Prithvi Air Defence (PAD) missile for high altitude interception, and the Advanced Air Defence (AAD) Missile for lower altitude interception. The two-tiered shield should be able to intercept any incoming missile launched 5,000 kilometers away.

PAD was tested in November 2006, followed by AAD in December 2007. With the test of the PAD missile, India became the fourth country to have successfully developed an Anti-ballistic missile system, after United States, Russia and Israel. On March 6, 2009, India again successfully tested its missile defense shield, during which an incoming "enemy" missile was intercepted at an altitude of 75 km.
INS Arihant

INS Arihant (S-73) is the lead ship of India's Arihant class of nuclear-powered submarines. The 5,000–6,000 tonne vessel was built under the Advanced Technology Vessel (ATV) project at the Ship Building Centre in Visakhapatnam.

The symbolic launch ceremony for the Arihant was held on July 26, 2009 marked the anniversary of Vijay Diwas (Kargil War Victory Day). It was reported that the nuclear reactor and other systems were not included at the time of the submarine's launch.

Full integration of key systems and Sea trials are expected to be extensive. The name of the vessel, Arihant is in Sanskrit and literally translates into destroyer of enemies.

The completion of the INS Arihant will make India one of six countries in the world with the ability to design, build, and operate its own nuclear submarines (the others being the United States, the UK, Russia, France, and China).
PAK FA and FGFA

The Sukhoi PAK FA is a fifth generation fighter aircraft being developed by Sukhoi OKB for the Russian Air Force.

The current prototype is Sukhoi's T-50. The PAK FA when fully developed is intended to replace the MiG-29 Fulcrum and Su-27 Flanker in the Russian inventory and serve as the basis of the Sukhoi/HAL FGFA project being developed with India. A fifth generation jet fighter, it is designed to directly compete with Lockheed Martin's F-22 Raptor and F-35 Lightning II. The T-50 performed its first flight January 29, 2010. Its second flight was on February 6 and its third on February 12.

Sukhoi director Mikhail Pogosyan has projected a market for 1000 aircraft over the next four decades, which will be produced in a joint venture with India, two hundred each for Russia and India and six hundred for other countries. The Sukhoi/HAL Fifth Generation Fighter Aircraft (FGFA) is a fifth-generation fighter being developed by Russia and India. It is a derivative project from the PAK FA (T-50 is the prototype) being developed for the Indian Air Force (FGFA is the official designation for the Indian version).

According to HAL chairman A.K. Baweja shortly after the India-Russia Inter-Governmental Committee meeting on 18 September 2008, the Russian aircraft will be a single-seater, the Indian FGFA will be a twin seater, analogous to the Su-30MKI which is a twin seat variant of the baseline Su-30. Two separate prototypes will be developed, one by Russia (designated the T-50), and a separate one by India (designated FGFA).

back to top